HEAT TRANSFER IN A CYLINDRICAL UNDERGROUND CHANNEL

B. L. Krivoshein and V. N. Novakovskii UDC 536.242

We treat the problem of the flow of a fluid in a cylindrical underground
channel, taking account of the thermal interaction of the stream with
the surrounding medium.

The preoblem of fluid flow, taking account of heat transfer, arises in the study
of heat transfer between the ground and various kinds of piping such as gas and oil
pipelines, steam and water mains, etc.

We consider a cylindrical channel of radius Re with its axis at a depth H below
the surface of the ground.

We make the following assumptions:
1) the ground is isotropic, 1l.e., its properties are the same in all directions;

2) the distance from the surface of the ground to the channel axis is the same
over the whole length of the channel, i.e., H = idem;

3) the temperature distribution in the ground far from the channel (x - «} is de~
scribed by the equation Tgy = Te + S8y, where & = (Tl = Te)/Ho.

For steady-state heat transfer between the channel and the ground the temperature
distribution of the ground is given by Laplace's equation

OTgr Ty (1)

Ox? Oy?

We seek the solution of the problem in the form
T =Tet oy T, (2)
where T, satisfies Laplace’s equation
o°T, 0T,
=z = 0.

0x? * oy? (3)

We consider the solution of the problem for boundary conditions of the first and
third kinds.

Boundary conditions of the first kind have the form
r:Rw . Yér :TF;

(4a)
y=0, T, =T,. (4b)

Taking account of (2) and {3) the boundary conditions for T, are
r=Ry To=TF —Te 08, (5a)
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y=0, T,=0. (5b)

We seek the solution of (3) in bipolar coordinates [1, 2]. To do this we use
the modified system of bipolar coordinates

x+iy=aicth Eg—LB—, (6)
where
_ asinf ) B asho
cha—cosp cho—cosp

Since the representation (6) is conformal, Laplace's equation (3) is invariant,
i.e.,

or, O Oy, ( FT, . T\ _

I_ i - O)
o gz opr ) 7
where g = (ch o — cos B)a™' is the scale of the transformation; a = VHZ — R2.

Instead of (7) we can write

o*T, | *T,
2t =0 (8)
du? 13
with the boundary conditions
Sasha
a=0y, T,=Tr—T,+ SN
’ : F ¢ choy—cosP (92)
a=0, T,=0. (9b)

Since the region for which the temperature distribution of the ground is being
constructed is symmetrical with respect to the B(0, y) axis, the function describing
the temperature distribution of the ground must be an even function of B(x). Therefore
we seek the solution in the form

T,=A-- B+ Z (A,chno -+ B, shna)cosnp.

n==l

(10)

By satisfying the boundary conditions, determining the constants A, B, Ap, and By,
and substituting them into (10) we obtain the solution of the problem for boundary con-
ditions of the first kind

sha shno' o

T =T +-8g——" exp (— na,) cos nf.
gr € cho—cosp Y shna, P o F (11)

The boundary conditions of the third kind have the form
ng Bi,
l’—R, = T——T )’ (123)
0 on Ro (Tp gr
y=0, Jo B‘Z (T —T,). (12b)
dy

We rewrite conditions (12a) and (12b) in blpolar coordinates: for a = ae
cha,—cosb . oT, (T, —T,—T)) Bi; & Bi; ) chay, s 1 —cha,cos P . (13a)

a Oc o R, cha,—cosf chey~—cosf

for a =0
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l—cosP IT, .
. = Bi, —= -8,
TRy @)

The coefficients in the boundary conditions (13a,b) depend on the parameter 8.
The solution will be in the form of nonorthogonal series, which complicates the de-
termination of the coefficients. We simplify the problem by linearizing §(ua,B) =
(ch @ — cos B)/a. We average in such a way that

I

&

F@= | | lg(w B)—g*dodp = min,
0 -
AL g § (e, B)— 2]dadp =0 (-"iF_ >o‘).
dg ) J dg?
Hence
PR j ' (e B)dudp. (14)
2mal, .

We rewrite boundary conditions (13a,b), taking account of the linearization per-
formed

— or, _ Bip (TF_Te by Shay ——T‘,) g L—chagcosp ’ {15a)
Oot che, \ cha,— cosf ) (chay— cos f)?
aT y
foasd O’ 2 = Bl T ‘—6&,
o oo 2 L9 (le)

where Bi;' = aia/Agr and Bi,' = aea/Agy.

Using (15a) and (15b) the solution of the problem for boundary conditions of the
third kind takes the form

Bh
cho — cos B Bi (1 4 oy Bi) + Bigch o

. cha .
G B, [Sa <a0—oc—{— i )+(TF_Te—aa)(1+aBi2)]

T =T --8a

gr e !

>« (Bij—nchey) (-é?—,chnoc%shnoc) exp (— 7 a,) cos nf
12

— 26a (16)

o B , n
el Bi (—7ch noy + sh nao) “4-nch o:o( - shna, 4~ ch noao)
19 / 2

We consider the limiting cases:

a) Bi]_' > o Biz' > ®
o]

. , sho . a vV shaa
lim T =T_+6a ———m—"T— - (T, —T. —82) — -—25(12‘ ——— exp{(—ha
B e & © cho—cosp T Te ) o sh ne P o) cos rf.
] 0 =1 0
Bié—»m
In this case the boundary conditions of the third kind degenerate into conditions
of the first kind, and solution (16) goes over into (11).
It is easy to see that Bi,' = = and Bi,' + « can occur if

l) a1—>°°, Ay > ™3 2) )\gr'—*o.
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The first case corresponds to intense heat transfer between the fluid and the
channel wall and between the external medium and the surface of the ground (Bi,' > 100).
The second case is characteristic of a channel in material of very low thermal conduc-
tivity, such as dry ground or thermal insulation.

b) Bi,' + «, Bi,' = 0

lim Tgr =T, +ba——— sho = 8a(oy—a—1) — 20a E ¢h nx exp (— na,) cos nf.
Bi| cha — cos chno,
Bi;—»oo

The conditions Bi;' + = and Bi,' =+ = can be realized if @; = « and ag + 0. This
case corresponds to intense heat transfer between the fluid and the channel wall, and
no heat transfer between the fluid and the external medium (e.g., the surface of the
ground is insulated by a thick blanket of snow).

c) We estimate the value of the series in (16). For all 0 = a=ua, the fol-
lowing inequality holds:

n ‘ I
i B h B chnoa — shno
F = | 28a exp (— o) (Bl —n cha) ’;2 cosnp |
- thno, - 1 ~——— chno, + shaa, !
Bi; 4+ nch e, t2 f2
noo
— - thno,
BIQ
< 954 exp (— nat,) (Bi; — n cha,) cos np <
' 1 o thnag - 1
f=—
B11 ~nch Qy 2 i
-+ th neg
io :
X exp (— net,) (Biy —n ch o) cos nf | Y |
26 > 2! N exp(— . 1
<< 20a Bi, ~neha, < tﬂ Xp (— noy,) cos nﬁi 17

n=1 n==1

Using the relation

_sha o E exp (— ne) cos 1B,

cha, —cosp

we obtain

F<ta sho,

__1\ = 6! Yo, — @}

| choy,—cosp (18)
If we take § = 1°C/m, the sum of the series does not exceed 0.7-0.8°C. This esti-
mate shows that within the limits of accuracy needed in engineering calculations this
series can be neglected. Equation (16) then simplifies to
Bi, 6a( —a -+ C—h“—) +(Tg—T —6a)(1—-o¢B12)}
sho ) (19)

; 11
T =T Léa - ; ; i
gr ¢ " cho—cosB Bi; (1 - a, Big) -+ Bizcha,

The equations for the isotherms of the temperature distribution of the ground
around a pipe can be obtained from (19):

B = arccos | cha — _ da Sff’oa ‘ . } .
r _p_ Biuba(@—a+ che/Bi) + (T — T, — 6a) (1 -~ & Biz)] (20
S Biy (1 -+ @, Biz) -+ Biz ch a,
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Fig. 1. Temperature distribution of the ground around a gas main
at Middle Asia Center (a) and Bukhara-Ural (b) for Te = 26.5 and

29°C, respectively; x and y are in meters.
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We consider the change in the fluid temperature along the axis of the cylindrical
channel, assuming that the cross flow of heat in the ground is much larger than the

heat transferred by thermal conduction in the fluid,

aTF

21 (’Egr— Tgr r=Ro) P g

i.e.,

In this case the heat~balance equation in blpolar coordinates for an elementary

portion of the channel of length dz takes the form
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T

121 [ j‘ (Te— Tgr iam=at,) @

R,sha,

d | dz = — Ge,dTy. (21)
ch oy — cos f ﬁ] ¢ i

After substituting the value of Tgr|a=ao from (19) into this equation, integrating,

and using the condition that T = Thg at z = 0 we obtain

T.=T,+ e +(Tn b 6a) exp (—k”Dz) ,
c & ¢ ¢ Ge
where ! t : P
_ Bi; Bi b= Bi; (1 -~ Bis) (22)

Biy (1 + o, Biz) =~ Bischa, ~ © Bij (I + o, Bi) -+ Bigche,

;e': (317\g_1:, OC(,:IH [_Ii+]/f*—(%)2_l].
0

Equation (22) is similar to Shukhov's equation, differing from it only in that the
temperature of the external medium T, enters with a correction for heat transfer in the
ground, and instead of the heat-transfer coefficient there appears the quantity k tak-
ing account of the thermal interaction of the pipeline with the surrounding medium.

The analytic relations (11) and (19) were compared with experimental data obtained
at gas mains of the Middle Asia Center near the Khiva compressor station by B. L.
Krivoshein, V. A. Trokhin, and A. V. Petrov and near the Urgench compressor station at
Bukhara-Ural by B. L. Krivoshein, M. F. Sverdlov, and V. V. Spiridonov. The results of
the comparison are shown in Fig. la,b. On these figures the numbers to the right of
the chosen points (points of measurement) are the experimental results. The numbers to
the left of the points are calculated. The upper values correspond to boundary condi-
tions of the first kind, and the lower values to boundary conditions of the third kind.
The calculated temperatures are in satisfactory agreement with experiment. The di-
vergences from experiment for boundary conditions of the first kind average from 3-77%
for the Bukhara-Ural gas main, and 5-10%7 for the Middle Asia Center gas main. For
boundary conditions of the third kind the differences are no more than 10%. The dif-
ferences arise from the fact that under actual conditions the thermal conductivity of
the ground is different in different directions even when the ground is homogeneous.
Close to the pipe the ground is dry and its thermal conductivity is lower than in re-
gions far from the pipe. In addition, the ground is not homogeneous, and this affects
the experimental results. On the whole it should be noted that the working formulas
(11) and (16) are quite accurate enough for engineering applicationms.

NOTATION

Tgr is the temperature of the ground; Te is the temperature of the extermnal
medium; Tp is the temperature of the fluid flowing in the cylindrical channel; Tpl is
the temperature of the neutral layer; Agr is the thermal conductivity of the ground;
a; is the coefficient of heat transfer from the fluid to the channel wall; ag is the
coefficient of heat transfer from the ground to the external medium; Ro is the radius
of the channel; H is the distance from the surface of the ground to the channel axis;
Ho is the depth of the neutral layer of the ground; Ay is the thermal conductivity of
the fluid; G is the mass flow rate of the fluid; Cp is the specific heat of the fluid;
‘X, ¥, 2, G, P are coordinates.
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